论文部分内容阅读
目的建立人工神经网络模型用于估算耐甲氧西林葡萄球菌(MRS)感染患儿万古霉素稳态血药浓度,以指导个体化给药。方法收集100例MRS感染患儿静脉泵注万古霉素后的180例次稳态血药浓度数据和临床资料。将所有血药浓度数据和病例资料随机分成两组,训练组(n=150)采用遗传算法配合动量法训练后建立人工神经网络模型,另外建立多元线性回归模型;测试组(n=30)用建立的人工神经网络预测测试组患儿的血药浓度,通过计算平均预测误差(MPE)、权重残差(WRES)、平均绝对预测误差(MAE)、平均预测误差平方(MSE)和均方根预测误差(RMSE)来验证模型。结果人工神经网络MPE(0.33±1.86)mg·L-1,WRES(14.83±14.55)%,MAE(1.38±1.26)mg·L-1,MSE(3.45±5.32)(mg·L-1)2,RMSE 1.86 mg·L-1;人工神经网络模型有83%的血药浓度数据绝对预测误差<3.0 mg·L-1,而多元线性回归模型仅有53%。人工神经网络预测的准确度及精密度均优于多元线性回归模型。结论本研究建立的人工神经网络预测性能较好,可用于预测MRS感染患儿万古霉素稳态血药浓度以指导个体化给药。