论文部分内容阅读
本文研究了图像手势识别和增强现实技术,设计了可以进行静态手势识别和动态跟踪的系统,通过提前录入不同手势,利用皮肤颜色对图像进行OSTU自适应阈值划分,建立二值化图像,与已知的手势进行匹配,以得到手势结果。实验结果表明,准确率达到96.8%,识别速度达到0.55s。动态跟踪利用检测每帧图像中手部的位置进行定位和捕捉,图像捕捉帧数达到28帧/s,对手势静态识别和动态跟踪实现了人机之间的良好交互。