论文部分内容阅读
改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA,DILTSA能够同时保持类内与类间局部判别几何结构。此外,提出一种增强型Gabor-like复数小波变换以缓解照明和表情变化对人脸识别的影响。通过融合Gabor-like复数小波变换和原始图像特征,能够进一步提高人脸识别的准确率。在Yale和PIE人脸数据库上的实验