论文部分内容阅读
目前青梅的缺陷识别检测仍然依靠人工挑选方式来完成,但人工挑选方式受工作经验、劳动强度等因素制约,已经难以适应产业的发展。为有效提高青梅表面缺陷检测的自动化程度和检测精度,本试验应用机器视觉技术针对青梅表面的缺陷检测展开研究。通过搭建青梅表面图像静态采集系统,采用图像处理软件HALCON对青梅表面进行了单通道灰度图像提取、图像滤波、灰度二值化及特征提取等预处理操作,实现了对青梅表面图像的去背景化,并利用去边缘法在青梅H通道分量图像中成功提取到青梅表面缺陷。最后采用高斯混合模型构建青梅表面缺陷检测分类器