论文部分内容阅读
文章提出了一种单混和信号盲源分离(BSS)问题的改进解法。在源信号数大于混合信号数时,标准ICA法不再有效,BSS可使用稀疏分解法。文章首先将稀疏分解法等同于支撑向量回归(SVR)的一种形式,为稀疏分解法提供新的直观解释和求解方法。通过引入序列最小化算法(SMO)求解该SVR类比形式,显著提高了算法的速度和实用性。最后,我们将方法应用于QAM调制信号的单混合信号的盲分离问题,得到较好的分离效果。