论文部分内容阅读
针对Web使用挖掘中聚类结果准确性不高的问题,提出了一种改进的基于相对Hamming距离和类不一致度的聚类算法。该算法首先以Web站点的URL为行、以UserID为列建立关联矩阵,元素值为用户的访问次数;然后,对所建立关联矩阵的列向量或行向量进行相似性度量,获得相似客户群体或相关页面。实验表明,该算法具有较高的准确性。