论文部分内容阅读
校正样本选择以及奇异样本剔除对于近红外光谱定量和定性建模非常重要。现有的识别奇异样本的方法一般都基于数据重心估计,需要一个经验的判断阈值,在很大程度上限制了其识别准确性和实用性。针对现有方法奇异样本识别准确率低的问题,改进了一种现有度量尺度-杠杆值,构造出一种新的基于强影响度的奇异样本识别算法。这种度量尺度在一定程度上减少了对数据重心的依赖,使正常样本更加聚集,拉开了奇异样本与正常样本的距离;同时,为了避免人工根据经验设定阈值的不合理性,引入统计学领域中跳跃度的概念,提出了一种自动阈值设定方法判别奇异样本