论文部分内容阅读
考虑一类三阶非局部边值问题{x′″(t)=f(t,x(t),x′(t),x″(t))+e(t),t∈(0,1),x′(0)=0,x″(0)=x″(ξ),x″(1)=∫01x″(s)dg(s),其中f:[0,1]×R3→R是连续函数,g:[0,1]→[0,∞)是非减的函数,且满足g(0)=0.在g满足共振条件g(1)=1和dimKerL=2的情况下,通过应用重合度理论,得到了该问题解的存在性结果.