论文部分内容阅读
提出了一种基于径向基函数(RBF)神经网络的通信信号调制识别方法,该方法采用模糊C-均值(FCM)聚类算法对数据进行聚类,并获取基函数的参数,采用梯度下降法训练网络权值.利用最优停止法对网络进行了优化,避免了过学习现象,提高了RBF网络的训练速度和泛化能力,以实际信号数据对该网络进行性能检验,实验结果表明了该RBF网络具有较高的识别精度.