论文部分内容阅读
随着数据驱动智能技术的快速发展,个性化推荐算法及相关应用成为了研究热点。推荐可视为将用户与物品进行匹配的问题,但用户与物品之间存在的语义差距不便于两者之间的直接匹配。现有的许多基于深度学习的推荐算法采用的思路都是将不同空间中的实体映射到统一潜在语义空间,利用其嵌入表示来进行匹配度计算。随着网络表示学习方法的出现,由于用户和物品的交互可构成二分图,用户和物品的嵌入表示可被视作二分图节点表示,许多基于二分图节点表示的推荐算法被提出,但现有算法仍难以对高阶交互信息进行有效提取。针对这一问题,文中提出了一种基于二