论文部分内容阅读
应用上海市高速公路1104条事件数据,基于专家知识和数据融合方法建立贝叶斯网络结构;利用服从Dirichlet分布的贝叶斯方法进行参数学习;运用团树传播算法进行推理分析。研究了上海市高速公路尾随相撞事件类型与不同道路环境条件之间的关系。在验证贝叶斯网络模型的有效性后,系统分析事件致因,并提出改进措施。发现重大尾随相撞事件易发生在大中型车与小型车之间;夜间易发生大中型货车的重大尾随相撞事件,尤其是凌晨0时至6时;路表潮湿状态下的非普通路段上易发生大中型客车的重大尾随相撞事件。结果表明贝叶斯网络建模能够更好的