论文部分内容阅读
为了更好地治疗宫颈癌,准确确定患者的宫颈类型是至关重要的。因此,用于检测和划分宫颈类型的自动化方法在该领域中具有重要的医学应用。虽然深度卷积神经网络和传统的机器学习方法在宫颈病变图像分类方面已经取得了良好的效果,但它们无法充分利用图像和图像标签的某些关键特征之间的长期依赖关系。为了解决这个问题,文章引入了胶囊网络(CapsNet),将CNN和CapsNet结合起来,以提出CNN-CapsNet框架,该框架可以加深对图像内容的理解,学习图像的结构化特征,并开展医学图像分析中大数据的端到端训练。特别是,