正压和斜压条件下勾头和直角丁坝的流动特性比较(英文)

来源 :Journal of Marine Science and Application | 被引量 : 0次 | 上传用户:fuyao698
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projected lengths. To compare the flow characteristics, we replaced the right-angle groin with an approximation of a refractive groin. This replacement had the least effect on the maximum velocity of flow in the channel. Moreover, we investigated the distribution of the density variables of temperature and salinity, and their effects on the flow characteristics around the right-angle groin. A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values are very similar for both the refractive and right-angle groins. The geometry of the groin, i.e., right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream refractive groins. We also correlated a number of non-dimensional variables with respect to various flow characteristics and groin geometry. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm’s length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow. Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the primary causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projections lengths. To compare the flow characteristics, we replace the right-angle groin with an approximation of a refractive groin. This, we replaced the least velocity on salient, and their effects on the flow characteristics around the right- A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values ​​a re very similar for both the refractive and right-angle groins. The geometry of the groin, ie, right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream compression groins. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm’s length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow.
其他文献
会议
会议
会议
采用光学显微镜、扫描电子显微镜和透射电子显微镜对热轧态和回火态AH80DB低碳贝氏体钢的显微组织、马氏体/奥氏体(M/A)岛、第二相的析出行为以及晶界取向差、有效晶粒尺寸进
会议
会议
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized ci
会议
会议
会议