论文部分内容阅读
在协同过滤算法中最主要是用户相似度计算,但是用户评分项数据存在严重稀疏,导致推荐精准度降低。针对评分项数据稀疏性问题,论文提出一个C-DAE协同过滤算法。首先,利用卷积神经网络(CNN)对项目评论文本提取用户兴趣偏好,得到项目向量矩阵,其次,利用项目向量矩阵对降噪自编码器(DAE)加权填充原始评分矩阵,最后填充后的评分矩阵计算用户相似度进行推荐。实验结果证明,该方法解决了评分项数据稀疏性问题,提高了推荐质量。