一种基于动态角色标识和张量分解的推荐模型

来源 :电子学报 | 被引量 : 0次 | 上传用户:iceqi77
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
社交网络推荐中,通常未依据用户兴趣变化进行用户角色动态标注,会造成推荐预测误差,并且用户评分数据稀疏造成评分预测不准确.根据以上问题,本文提出一种基于动态角色标识和张量分解的推荐模型.首先,针对用户角色无差别标识问题,引入信息熵指标度量用户兴趣多样性,对目标用户进行角色定量标识.其次,考虑到用户兴趣漂移现象,提出基于时间窗的动态角色标识方式,解决静态角色标识产生的个体评分数据无偏好差异问题,实现用户评分数据层次化处理.最后,为提高评分预测准确率,通过引入张量分解在数据维度转换和数据压缩的特性,构建基于“用
其他文献
基于模型的诊断问题在人工智能领域内一直备受关注,将诊断问题转换成SAT(Satisfiable)问题成为解决基于模型诊断问题的一个重要方法.基于目前高效诊断方法 LLBRS-Tree(Last-Leve
针对吸波超材料与柱面载体共形时其吸波性能变差的问题,提出了一种非均匀单元方案及其优化设计方法.在柱面共形设计中,根据吸波超材料在无曲率变化方向上的周期性建立周期边