论文部分内容阅读
提出了一种异因同果关联神经网络模型,可以从不同角度分别建立不同的模型,并由其得到互不相同的模型预测值.异因同果关联神经网络模型将不同角度建立的模型有机结合起来,进而能够将多个神经网络模型进行综合考虑,得到一个综合的统一的模型预测结果.研究了新型模型的机理,结合实例进行仿真并与传统的神经网络模型的预测仿真结果比较,结果表明新型模型具有更高的预测精度.