论文部分内容阅读
针对复杂时间序列全局预测模型建模效率低、预测性能不佳等问题,提出一种基于局部RBF神经网络的新型预测模型.该模型采用K最近邻搜索方法得到待预测样本的K个近邻,用近邻样本进行RBF神经网络建模,用训练好的RBF神经网络对待预测样本进行预测.实验结果显示该模型在复杂时间序列预测上有良好的性能.