论文部分内容阅读
针对微粒群算法在搜索过程中粒子容易失去多样性而陷入局部最优且搜索速度较慢的缺陷,提出了一种基于高斯分布和模拟退火算法的免疫微粒群算法,该算法借助高斯分布和模拟退火的有关机理,分别进行免疫接种和免疫选择的操作。使用常用的基准函数对算法进行了仿真验证工作,通过与全局微粒群优化算法、变惯性权值微粒群优化算法的对比表明,免疫微粒群优化算法(IPSO)在搜索速度和全局寻优方面具有一定的优势。