论文部分内容阅读
基于经典的LDA模型,提出新的结合超像素分割技术的空间相关主题模型SP-SLTM及相应的场景分类方法.在建模过程中引入类别约束机制,即给每类场景赋予各自的类主题空间,使模型参数的推导更加简便;在"视觉词包"的生成过程中,对图像区域进行进一步二次超像素分割;提取每个超像素的颜色和纹理特征,形成超像素的混合特征表示.上述方法的优点包括:加上从图像区块所提取的SIFT特征,共得到3种视觉词语,弥补传统方法中采用单一视觉特征描述整幅图像的不足;同一区域内的所有视觉词语共享一个主题,增加视觉词语间的空间相关性