论文部分内容阅读
主成分分析(PCA)作为形状建模中的经典算法,在训练阶段考虑训练样本的整体信息,而忽略了样本的局部细节信息。分段主成分分析(MPCA)针对PCA的不足改进了算法,在人脸识别应用中获得了比传统PCA更好的识别效果。但在MPCA中样本一般都被划分为同样大小的子样本块,没有考虑到实际的样本局部动态变化信息。这里根据初始样本的方差信息对MPCA算法进行改进,将样本划分成尺寸大小不一的多类样本(分段样本),然后分别对分段样本做主成分分析,得到原始样本的分段PCA模型。将该模型应用于前列腺超声图像分割实验,结果