论文部分内容阅读
平行句对抽取是解决低资源神经机器翻译平行语料不足的有效途径。基于孪生神经网络的平行句对抽取方法的核心是通过跨语言语义相似度判断2个句子是否平行,在相似的语言对上取得了非常显著的效果。然而针对英语东南亚语言双语句对抽取任务,面临语言空间和句子长度存在较大差异,仅考虑跨语言语义相似度而忽略句子长度特征会导致模型对仅有语义包含关系但不平行句对的误判。笔者提出一种结构特征一致性约束的双语平行句对抽取方法,该方法是对基于孪生神经网络的双语平行句对抽取模型的扩展,首先通过多语言BERT预训练语言模型在嵌入层将两种语言