论文部分内容阅读
BP神经网络是一种应用面较广的神经网络,但存在明显缺陷:学习收敛速度慢,易陷入局部极小。遗传算法具有良好的搜索全局最优解的能力。在探讨训练样本选取的基础上,耦合遗传算法和BP神经网络构建了遗传网络并应用于砂土液化的评价,通过与动量梯度下降算法改进的BP神经网络对比,表明了基于遗传算法的BP神经网络在砂土液化评价中的优越性。