论文部分内容阅读
针对传统K—Means聚类算法需要用户输入聚类数目的缺点,对K—Means聚类算法进行了改进,提出使用一个有效指数来克服这个问题,该算法不需要背景知识,自动聚类,提高了聚类的准确性。该算法还可以根据数据量的大小确定合适的步长,增强了适应性。通过将该算法应用于网站日志数据中对用户进行聚类,验证了算法的有效性。