催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料

来源 :材料工程 | 被引量 : 0次 | 上传用户:guobin_tj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用三氯化铝为催化剂、煤焦油为前驱体催化炭化致密化碳毡制备C/C复合材料,在此基础上结合同步浸渍原位反应或反应熔体浸渗过程制备C/C-SiC复合材料,并对复合材料的微观结构、力学性能等进行表征分析.结果表明:在催化炭化-原位反应法制得的C/C-SiC复合材料中,SiC多以纳米线的形式存在于碳纤维束内部和碳纤维束之间的孔隙,C/C-SiC复合材料总体表现出假塑性断裂模式,其弯曲强度达到了(158±12)MPa;而催化炭化-反应熔体浸渗法制得的C/C-SiC复合材料中,SiC以立方体、六方体颗粒存在,复合材料的断裂行为呈现出脆性断裂模式,弯曲强度达到了(150±10)MPa.相对于催化炭化-反应熔体浸渗法,催化炭化-原位反应法所得到的C/C-SiC复合材料具有工艺简单、成本低、力学性能优异等诸多优势.
其他文献
随着包装工业的快速发展和人类社会对环保要求的提高,功能性且可生物降解的包装膜材料越来越受到人们的重视.然而,目前市场上的可降解包装膜材料由于成本较高、力学性能差以
采用碳纤维增强复合材料(CFRP)基板制备不同搭接长度的单搭接胶接接头,并利用数字图像相关方法(DIC)、万能电子试验机等测试手段,对胶接接头失效载荷、断裂过程和应变场变化等进行表征,研究搭接长度对单搭接接头拉伸性能、断裂过程、应变分布以及破坏特征的影响。结果表明:随搭接长度增加,接头平均剪切强度先明显降低,后趋于稳定。拉伸过程中由偏心载荷所引起的接头次弯曲效应愈加显著,搭接区域端部变形程度逐渐增大,接头初始破坏位置由搭接区域端部中的一端向两端转变。接头正面和侧面端部的应变集中区域由非对称分布向对称分布过
针对航空发动机热端部件复杂结构存在的陶瓷基复合材料成型难度大的问题,以碳纤维织物为增强体,以有无添加粉体的两种树脂料浆为研究对象,开展料浆-熔渗工艺制备碳纤维织物增强碳化硅复合材料技术研究,探索两种料浆的注浆成型及熔渗工艺适应性,并对获得的复合材料基本性能进行表征。结果显示:有无添加粉体的两种料浆的黏度适中,在注浆工艺温度下具有3~5 h以上的注浆工艺窗口,通过注浆成型工艺均可获得少孔隙、质量均匀的树脂基复合材料;无粉体和有粉体的料桨固化物在900℃炭化后,孔隙率分别为39.6%和31.3%,残炭率分别为