论文部分内容阅读
针对目前心音分析算法识别率不够高的问题,提出了一种基于变值逻辑模型的先心病心音分类算法.首先,对心音信号进行预处理,去除非病理性噪声并提取心音包络;然后,对心音信号的包络数据进行变值逻辑运算,对包络数据进行标记将其转换为伪DNA序列,并转换为可视化分析的测度数据;最后,使用Inception_Resnet_v2等深度学习模型对常见先心病心音信号进行多分类测试,并与其它已有的算法进行对比.研究所用的正常和异常心音样本共1000例,其中在测试集上进行多分类的平均准确率为0.931.实验结果表明,该算法优于目前