海洋低盐度干湿交替环境不同金属镀层对D32钢保护特性研究

来源 :装备环境工程 | 被引量 : 0次 | 上传用户:Melanzpl2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的探究一种适合于低盐度海域干湿交替环境金属腐蚀防护的金属镀层。方法以胜利海域低盐度的腐蚀环境为研究对象,以D32钢为基体,通过直流脉冲电流电镀4种金属(Al、Mg、Cu和Zn),镀层厚度为(30±1)μm,通过电化学测试和腐蚀形貌分析研究不同镀层金属的腐蚀动力学过程和点蚀特征,以确定最佳保护金属镀层。结果在干湿交替和低氯离子浓度下(质量分数为2%),4种电极均表现为活化腐蚀状态,均为阳极控制状态。4种金属镀层腐蚀电位从低到高为Cu<Zn<Al<Mg,腐蚀电流密度为Zn<Cu<
其他文献
目的研究DZ-1电子设备缓蚀剂用于电子设备防护的有效性。方法参照MIL-PRF-81309G、MIL-L-87177A和Q/AVIC 03018中的试验方法,对自主研制的DZ-1电子设备缓蚀剂的性能进行全面评价。结果DZ-1电子设备缓蚀剂没有闪点,在运输、储藏及使用过程中非常安全,使用性能良好,很容易去除,能够去除材料表面的水分,具有良好的缓蚀性能。膜层厚度小于5μm,不会影响电子元件的电学性能,不会对电子设备中的材料造成腐蚀。结论DZ-1电子设备缓蚀剂满足电子设备的防腐蚀要求,可以用于电子设备的腐蚀防护
为解决传统分层滑模控制方法应用于球形机器人速度控制中会出现调节时间长、超调量大的问题,通过在滑模面内引入微分环节并结合分数阶微积分,提出一种具有分数阶PIλDμ结构
围绕海洋环境下航空发动机的服役特点,针对发动机叶片在海洋/近岸地区不同气候条件下的工作状况,对发动机冷端叶片在腐蚀-冲蚀联合作用下的失效机制进行了梳理总结。对海洋环境下服役的发动机叶片防护涂层的相关研究进行了归纳,总结了不同叶片防护涂层的设计理念及其性能表现。对于航空发动机叶片的防护涂层,目前主要是以一元或多元金属氮化物涂层,和金属相与陶瓷相的键合涂层为主,两类涂层的设计目的在于通过控制涂层中的相含量来调控涂层的强韧比和耐磨耐蚀性。
目的降低芯片工作温升,提升芯片的热可靠性。方法利用CFD仿真工具,搭建多芯片共用散热器的热仿真分析模型,确定不同方案的芯片结点温升。以芯片横向和纵向间距、散热器基板厚度、翅片高度、翅片厚度、横向翅片间距、纵向翅片数等7个结构参数与芯片温升之间关系为研究对象,以降低芯片结点温升为优化目标,通过灰色关联分析,筛选出主要影响因素,并利用响应面回归分析优化。结果其中4个因素的灰色关联度大于0.6,是影响芯片温升的主要因素,排序为纵向翅片数>基板厚度>芯片横向间距>翅片厚度;横向翅片间隔、翅片高度
目的针对航空发动机叶片榫头/榫槽摩擦副工作中的微动磨损问题,开展CoCrAlYSi-hBN抗微动磨损涂层研究。方法通过大气等离子(APS)和超音速火焰(HVOF)喷涂工艺,制备CoCrAlYSi-hBN涂层,采用扫描电镜(SEM)研究涂层的形貌和微观组织,采用显微硬度计和拉伸试验机测试涂层的显微硬度和结合强度,采用SRV试验机探究涂层的摩擦磨损性能。结果APS喷涂CoCrAlYSi-hBN涂层熔化更充分,显微组织均匀,具有更多高含量的hBN和孔隙;HVOF喷涂CoCrAlYSi-hBN涂层显微组织具有明显
目的研究TC17钛合金及其表面微弧氧化(Microarc Oxidation,MAO)涂层在模拟海洋大气环境下发生摩擦腐蚀行为的规律及特征。方法利用微弧氧化技术,在TC17钛合金表面原位生长MAO涂层,通过SEM、EDS以及XRD对MAO涂层微观结构、元素分布以及相组成进行检测分析。采用电化学工作站和摩擦腐蚀设备研究试样在模拟海洋环境条件下的耐腐蚀及摩擦腐蚀的性能。结果在硅酸盐中制备的MAO涂层,表面微孔尺寸较小,且分布均匀,MAO涂层与基体结合良好,无明显微裂纹等缺陷的存在,其平均厚度约为15.8μm。
基于区域选择性原子层沉积(AS-ALD)技术的自下而上制造工艺近年来在半导体、催化剂等领域得到了迅速发展.AS-ALD本质上是在同种材料的不同位点或异种材料表面实现目标产物在
阻尼合金不仅拥有将机械振动能转化为热能并耗散掉的物理特性,而且具有较好的力学性能.如果将阻尼合金制造成零件应用到装备中将能有效控制设备运行时产生的振动和噪声,因此
目的摸索飞机服役条件下油箱积水环境对油箱结构疲劳寿命的影响,评估基于常规疲劳寿命除以理论分散系数确定的安全寿命是否可以保证服役环境下的飞行安全。方法首先通过试验确定加速腐蚀试验中飞机油箱积水介质浓度,并结合飞机使用特点,确定战斗机机翼梁结构腐蚀-腐蚀疲劳试验环境-载荷谱。以此环境-载荷谱为基础,试验模拟油箱结构在地面停放和空中飞行所经历的腐蚀和腐蚀疲劳过程。采用结构和载荷谱分离的可靠性分析方法,研究腐蚀-腐蚀疲劳作用下结构的疲劳寿命。结果对常温疲劳试验结果与腐蚀-腐蚀疲劳试验结果的对比分析,表明腐蚀环境虽
目的检查电子设备是否能承受其工作环境的考验,提高其可靠性。方法模拟设备在真实环境下的工况,进行振动冲击试验。结果某机载电子设备振动试验功能失效,通过逐级分析,结合机理分析和仿真验证,定位振动故障原因,并给出设计和工艺改进方案。结论验证有效,可以作为同类故障处理参考。