论文部分内容阅读
针对Fisher线性判决分析(FLDA)在图像识别应用中遇到的小样本问题,提出了两向二维最大子类散度差((2D)2MCSD)鉴别分析的图像特征提取方法。首先找到每类数据的子类划分,再根据这些子类构造基于二维图像矩阵的子类类间和子类类内散布矩阵,最后用子类类间与子类类内散布之差作为鉴别准则求取投影矢量。该方法可以处理多模分布问题,从根本上避免了矩阵求逆和小样本问题,加快了特征抽取的速度,且同时对图像行和列进行压缩,克服了二维最大子类散度差(2DMCSD)鉴别分析和另一种形式的2DMCSD(Altern