论文部分内容阅读
智能混杂算法是当前智能优化算法的研究热点,可以融合多种优化算法的优势,提高算法的性能。单变量边缘分布算法具有大范围快速全局搜索能力,但不能很好地利用系统中的反馈信息;蚁群算法是一种并行的分布式正反馈系统算法,但其初期信息素匮乏,求解速度慢。将单变量边缘分布算法与蚁群算法相结合,可以优势互补。基于上述思想,提出一种基于单变量边缘分布算法与蚁群算法混合的算法,并运用马尔科夫随机过程理论对该算法的收敛性进行了分析,结果表明了该算法的优化解满意值序列是单调不增的和收敛的。