Engineering heterogenous catalysts for chemical CO2 utilization: Lessons from thermal catalysis and

来源 :能源化学 | 被引量 : 0次 | 上传用户:duan01
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The development of catalytic materials for the recycling CO2 through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this field,the reported catalysts rarely deviate from the traditionally supported metal nanoparticle morphology,with the most simplistic method of enhancement being the addition of more metals to an already complex composition.Encapsulated catalysts,especially yolk@shell catalysts with hollow voids,offer answers to the most prominent issues faced by this field,coking and sintering,and further potential for more advanced phenomena,for example,the confinement effect,to promote selectivity or offer greater protection against coking and sintering.This work serves to demonstrate the current position of catalyst development in the fields of thermal CO2 reforming and hydrogenation,summarizing the most recent work available and most common metals used for these reactions,and how yolk@shell catalysts can offer superior performance and survivability in thermal CO2 reforming and hydrogenation to the more traditional structure.Furthermore,this work will briefly demonstrate the bespoke nature and highly variable yolk@shell structure.Moreover,this review aims to illuminate the spatial confinement effect and how it enhances yolk@shell structured nanoreactors is presented.
其他文献
The notorious shuttle effect has long been obstructing lithium-sulfur (Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,w
Hydrogen generation via artificial photosynthesis paves a promising way to remit the ever-increasing energy crisis and deteriorative environmental issues.Among all the materials utilized for solar hydrogen production,perovskite has emerged as a rising sta
Hampered by the ambiguous mechanism of hydrogen evolution reaction (HER) in basic media,the exploration of highly efficient catalytically active sites for alkal
The relation between catalytic reactivities and metal/metal oxide ratios,as well as the functions of the metal and the metal oxides were investigated in the CO2
The development of novel organic electrode materials is of great significance for improving the reversible capacity and cycle stability of rechargeable batteries.Before practical application,it is essential to characterize the electrode materials to study
In recent years,hard carbon materials have gained significant interest as anode materials for Na-ion batteries.Biomass waste is considered one of the most inter
The small organic molecule electro-oxidation (OMEO) and the hydrogen evolution (HER) are two important half-reactions in direct liquid fuel cells (DLFCs) and wa
The metal-support interaction is of critical importance to enhance the catalytic activity and selectivity.However,it is still challenging to construct an approp
Cation vacancies can bring numerous surprising characters due to its multifarious electron and orbit distribution.In this work,δ-MnO2 with alkali-ion (K,Na,Li)
Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or