论文部分内容阅读
流体的流动可以看成是分子以上水平的粒子基本运动组合而成,任何一个粒子系统的Hamiltonian都是由动能和势能这两部分所组成.借助于Hamiltonian建立了微观粒子和宏观流体之间的能量守恒准则,发展了一个适合于热流场数值模拟的格子Boltzmann模型.从该模型可以还原出宏观的流体力学方程,所得动量方程的黏性输运项除了具有Navier-Stokes黏性力的特征外还与非定常的、非线性的动量通量和非定常的内能相关.用该模型对Benard热对流进行了数值模拟,很好地再现了Benard cell,并且克服了热格子Boltzmann模型数值稳定性差的不足.