结合DenseNet与通道注意力机制的空对地目标检测算法

来源 :激光与光电子学进展 | 被引量 : 2次 | 上传用户:Adisc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
空对地环境下成像视角单一,且需要依靠深层网络提供强特征表达能力。针对深层网络存在的计算量大、收敛速度慢等问题,在稠密连接网络(DenseNet)框架下,提出了一种用通道差异化表示的目标检测网络模型。首先,用DenseNet作为特征提取网络,并用较少的参数加深网络,以提高网络对目标的提取能力;其次,引入通道注意力机制,使网络更关注特征层中的有效特征通道,重新调整特征图;最后,用空对地目标检测数据进行了对比实验。结果表明,改进模型的平均精度均值比基于视觉几何组(VGG16)的单步多框检测算法高3.44个
其他文献
为实现对乳腺癌组织病理图像的准确自动分级,提出了一种改进的卷积神经网络,依次引入两种不同的卷积结构,以提高网络对病理图像的识别准确率。以深度残差网络(ResNeXt)为基础网络,用八度卷积(OctConv)替代传统卷积层,在特征提取阶段降低特征图中的冗余特征,提高了细节特征的提取效果;用异构卷积(HetConv)代替网络中的部分传统卷积层,以降低模型的训练参数。为了克服因数据样本较少出现的过拟合问
在敦煌壁画修复过程中,初始字典的随机选取易陷入局部最优,仅以颜色欧氏距离作为图像块分组标准会导致图像修复后易出现结构模糊和线条不连续等问题。针对以上问题,提出了一种基于Gabor变换和组稀疏表示的敦煌壁画修复算法。首先,采用互信息作为图像块分组准则,并建立相似结构组,这使得组稀疏表示更加合理;然后,通过Gabor小波变换对相似结构组进行特征信息提取,并结合PCA降维的方式得到初始化结构组的特征字典
为了提高偏振去雾方法对大气光估计的准确度,提出一种基于大气光偏振层析的雾天图像重构方法。在偏振空间下,将大气光梯度先验信息作为约束条件,对原始雾天偏振图像进行分层,估计大气光偏振图像;然后从大气光偏振图像中解析大气光,实现对大气光的偏振层析;最后,结合所提雾天图像偏振重构模型,并在大气光图像中估计无穷远处大气光,实现对雾天图像的去雾重构。实验结果表明,所提方法提高了大气光估计的准确度,进而使重构图
2005年2月8日上午9时,杭州首批30辆豪华奔驰出租车都停靠到了和平会展中心,举行“奔的”营运启动仪式。然而,与之高调入场的辉煌相比,“奔的”在投入市场营运后不久,就出现了惨淡经营的局面。“奔的”所交费用高、维修费高、客源少和油价上涨使得奔驰出租车难以经营。杭州“奔的”每月承包费为10600元~11500元,而帕萨特等中档车型的出租车,每个月只交7000多元。  如今,杭州的奔驰出租车只剩下15