论文部分内容阅读
针对基于LBSNs(Location-based Social Networks)的位置推荐算法考虑因素单一且不能有效解决用户位于不同城市的位置推荐的问题,综合考虑潜在的社交影响、内容匹配影响和地理属性影响等因素,提出了基于用户签到和地理属性的个性化位置推荐算法SCL(Social—Content-Location)。该算法在协同过滤的基础上,引入了用户兴趣特征比较,改进了用户的相似度计算;同时,在分析位置的内容信息时,融入用户评论,缓解了位置标签的短文本特性对LDA(Latent Dirichlet A