Design and realization of synchronization circuit for GPS software receiver based on FPGA

来源 :Journal of Systems Engineering and Electronics | 被引量 : 0次 | 上传用户:zahay
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate array (FPGA), and a series of experiment is done on the hardware platform. The result shows the all-digital synchronization and demodulation of GPS intermediate frequency (IF) signal can be realized and applied in embedded real-time GPS software receiver system. It is verified that the decision-directed joint tracking algorithm of carrier phase and symbol timing for received signals from GPS is reasonable. In addition, the loop works steadily and can be used for receiving GPS signals using synchronous demodulation. The synchronization circuit for GPS software receiver designed based on FPGA has the features of low cost, miniaturization, low power and realtime. Surely, it will become one of the development directions for GPS and even GNSS embedded real-time software receiver. With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate array (FPGA), and a series of experiment is done on the hardware platform. the all-digital synchronization and demodulation of GPS intermediate frequency (IF) signal can be realized and applied in embedded real-time GPS software receiver system. It is verified that the decision-directed joint tracking algorithm of carrier phase and symbol timing for received signals from GPS is reasonable. In addition, the loop works steadily and can be used for receiving GPS signals using synchronous demodulation. The synchronization circuit for GPS software receiver designed based on FPGA has the features of low cost, miniaturization, low power and realtime. Surely , it will become one of the development directions for GPS and even GNSS embedded real-time software receiver .
其他文献