切换导航
文档转换
企业服务
Action
Another action
Something else here
Separated link
One more separated link
vip购买
不 限
期刊论文
硕博论文
会议论文
报 纸
英文论文
全文
主题
作者
摘要
关键词
搜索
您的位置
首页
期刊论文
散乱数据重心有理插值新方法
散乱数据重心有理插值新方法
来源 :太原学院学报:自然科学版 | 被引量 : 0次 | 上传用户:zhanghua_it
【摘 要】
:
文章通过选取特殊的权函数,基于Berrut提出的有理插值的重心形式,构造出无极点的重心有理插值,研究了二元散乱数据的重心有理插值,给出的数值例子说明了新方法的有效性。
【作 者】
:
王本强
赵前进
【机 构】
:
安徽理工大学数学与大数据学院
【出 处】
:
太原学院学报:自然科学版
【发表日期】
:
2018年1期
【关键词】
:
二元
散乱数据
重心有理插值
bivariate
scattered data
barycentric rational interpolation
【基金项目】
:
国家自然科学基金(60973050), 安徽省教育厅自然科学基金项目(KJ2009A50)
下载到本地 , 更方便阅读
下载此文
赞助VIP
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
文章通过选取特殊的权函数,基于Berrut提出的有理插值的重心形式,构造出无极点的重心有理插值,研究了二元散乱数据的重心有理插值,给出的数值例子说明了新方法的有效性。
其他文献
Hadamard缺项的μ-Bloch函数的系数特征
对于[0,1)上的正规权函数μ,文章利用Hadamard缺项级数构造了单位圆盘上的解析函数μ*,使得μ*在实轴上满足μ(t)μ*(t)≈1,并且sup|z|≤rμ*(z)=μ*(r)。借助解析函数μ*,将Hadamard缺项级数
期刊
Hadamard缺项级数
正规权
BLOCH
系数特征
Hadamard gaps
normal
Bloch
coefficient characteristi
其他学术论文