论文部分内容阅读
分析了基于群体的增量学习(Population-based Increased Learning,简称PBIL)算法的基本原理和存在问题,提出了一种具有自适应学习和变异能力的改进策略.新的算法采用信息熵衡量种群的进化程度,并根据熵值的变化自适应地调整学习速率和变异率.应用该算法求解典型的Flow Shop调度问题,通过与简单PBIL算法和遗传算法的结果进行比较,表明该算法的计算效率和局部搜索能力得到提高,且收敛过程非常稳定.