论文部分内容阅读
相异度和相似度度量是聚类算法中非常重要的一种因素,往往会影响到聚类分析的结果。很多聚类算法采用欧式距离作为计算数据相似度的度量。而欧式距离不能反映属性值的全局特性,且不顾及各属性之间的量纲差异,因此当不同属性间具有明显量纲或值域差异时,不能取得很好的效果。对此,提出了一种广义加权Minkowski距离,即由各属性的量纲和值域信息来确定各属性的广义权值,既考虑了整个数据集的特性,又消除了各属性之间的不和谐,同时分位数的引进在一定程度上减弱了噪声属性值对距离度量的影响。将提出的新的距离度量用于经典的kmean