论文部分内容阅读
作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的.它已经广泛应用于分类、回归和模式识别等.在应用KNN算法解决问题的时候,要注意两个方面的问题--样本权重和特征权重.利用SVM来确定特征的权重,提出了基于SVM的特征加权算法(FWKNN,feature weighted KNN).实验表明,在一定的条件下,FWKNN能够极大地提高分类准确率.