论文部分内容阅读
协同过滤推荐算法在电子商务领域运用广泛.之前的研究要么仅从评分预测的角度来研究,要么仅从排序预测的角度来研究.为了兼顾这两个方面,本文在传统的基于评分预测的PMF(Probabilistic Matrix Factorization)算法和基于排序预测的xCLiMF(Extended Collaborative Less-is-More Filtering)算法的基础上提出了一种基于评分预测与排序预测的协同过滤推荐算法URA(Unified Recommendation Algorithm),该方法通过在