论文部分内容阅读
以某塑料拼插齿轮玩具为研究对象,采用自然平衡法设计1模144腔注塑模具。对有限元模型进行合理简化,并采用Moldflow软件进行塑料齿轮注射成型过程中的流动和翘曲分析。针对初始方案中出现的熔接痕和翘曲等缺陷,建立齿轮玩具BP人工神经网络模型,通过BP神经网络算法训练各工艺参数,并对体积收缩率和总翘曲量进行预测。将训练后较优的工艺参数组合应用于注射成型后,使得该塑料齿轮熔接痕分布改变,翘曲变形量明显降低。