论文部分内容阅读
针对牛顿拉夫逊迭代法求解正交Stewart六自由度平台位姿正解对迭代初值依赖的问题,提出基于Levenberg-Marquardt(L-M)算法改进的BP神经网络模型,进而实现对Stewart平台位姿正解的迭代初值补偿值计算,并与基于BFGS拟牛顿算法、SCG量化共轭梯度算法、GDA梯度下降自适应算法所建立的BP神经网络模型进行对比分析,重点分析模型的适应性、预测输出、误差性能等。结果表明:采用提出的基于L-M算法改进的BP神经网络模型对正交Stewart六自由度平台位姿正解的迭代初值校正后,收敛速度有显