论文部分内容阅读
提出了一种新的基于矩阵的QR分解与2DLDA的单样本人脸识别算法(QR decomposition+2DLDA).利用矩阵的QR分解,将单样本人脸图像进行QR分解后提取有效的部分信息构成虚拟图像,结合原训练图像生成新的训练样本集,应用2DLDA进行特征提取和识别.在ORL人脸数据库上对算法进行了实验,实验结果表明此算法的识别效果不仅优于PCA、SPCA、(PC)2 A、E(PC)2 A算法,而且对于光照、表情等因素具有良好的鲁棒性.