论文部分内容阅读
提出一种基于相似度融合的主动支持向量机算法,利用未标记样本和标记样本,结合支持向量机的方法实现主动学习。实验结果表明,该算法与普通主动学习的支持向量机相比,在保证分类器性能的情况下,可以减少标记样本的数目,抑制孤立样本对分类器的影响;在相同标记样本数目的情况下,该算法具有较高的分类精度。