论文部分内容阅读
针对E^3算法所需的收敛时间界限太大,在实际问题中难以有效应用的问题,提出了一种基于多Agent并行采样和学习经验复用的改进算法。该算法在探索阶段,通过多Agent并行采样,快速收集模型信息,加速了模型构建过程;在利用阶段,通过保留最优值函数的方式复用算法的学习经验,提高了算法迭代计算值函数的效率。仿真实验结果表明,所提方法与原始的E^3算法相比,在收敛速度和精度方面都具有很大的提高,与其他两种并行强化学习方法相比也具有很大的性能优势。