基于位错密度的体心立方晶体塑性本构模型

来源 :清华大学学报(自然科学版) | 被引量 : 0次 | 上传用户:zdhxhx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
晶体塑性理论是将晶体微观尺度的位错运动与宏观尺度的塑性形变相结合的重要理论,提供了在细观尺度内研究材料力学行为的有效方法。位错的密度变化对金属晶体的硬化行为有着重要的影响。该文在晶体塑性理论的基础上引入位错运动理论,建立基于位错密度的体心立方晶体(body center cubic,BCC)塑性本构模型,研究BCC的力学行为;并借助ABAQUS有限元软件,编写UMAT子程序,实现对BCC结构的铁单晶及多晶单轴拉伸试验的数值模拟。结果表明:该本构模型能有效地模拟铁单晶及多晶单轴拉伸的力学行为。 The theory of plastic plasticity is an important theory that combines the dislocation motion at the microscopic scale with the plastic deformation at the macro scale and provides an effective method to study the mechanical behavior of the material at the mesoscopic scale. The density of dislocations has an important influence on the hardening behavior of metal crystals. Based on the theory of plastic plasticity, this dissertation introduces the theory of dislocation motion and establishes a plastic center constitutive model of body center cubic (BCC) based on dislocation density. The mechanical behavior of BCC is studied. With ABAQUS finite element software, The UMAT subroutine was programmed to simulate the uniaxial tensile test of iron single crystal and polycrystalline BCC structure. The results show that this constitutive model can effectively simulate the mechanical behavior of iron single crystal and polycrystalline uniaxial tension.
其他文献
冻土的动力学参数是工程设计的重要依据之一,也是数值模拟时不可或缺的因素,动力学参数的正确与否直接影响了工程设计和数值模拟的正确性。通过分析其他学者做过的冻土动荷载