论文部分内容阅读
针对由于几何图形最高阶数不同而引起的NURBS曲面降阶逼近问题,基于NURBS曲面的显式矩阵表示,结合Chebyshev多项式逼近理论,提出了一种NURBS曲面降阶新方法.分别对一小片NURBS曲面和整张NURBS曲面进行降多阶,并导出了误差界计算公式.当对整张曲面降阶时先分别对各小片操作,再对各片降阶逼近曲面的控制顶点,集中其下标相重的部分做加权平均得到最终的整张降阶逼近曲面.提出的算法可以一次降多阶,所得NURBS降阶逼近曲面具有显式表达式,实现了NURBS曲面降阶的最佳或近似最佳一致逼近.