High-temperature treatment to engineer the single-atom Pt coordination environment towards highly ef

来源 :能源化学 | 被引量 : 0次 | 上传用户:hulielie310
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Development of high-performance and cost-effective catalysts for electrocatalytic hydrogen evolution reaction (HER) play crucial role in the growing hydrogen economy.Recently,the atomically dispersed metal catalysts have attracted increasing attention due to their ultimate atom utilization and great potential for highly cost-effective and high-efficiency HER electrocatalyst.Herein,we propose a high-temperature treatment strategy to furtherly improve the HER performance of atomically dispersed Pt-based catalyst.Interestingly,after appropriate high-temperature treatment on the atomically dispersed Pt0.8@CN,the Pt species on the designed N-doped porous carbon substrate with rich defect sites can be re-dispersed to single atom state with new coordination environment.The obtained Pt0.8@CN-1000 shows superior HER performance with overpotential of 13 mV at 10 mA cm-2 and mass activity of 11,284 mA/mgpt at-0.1 V,much higher than that of the pristine Pt0.8@CN and commercial Pt/C catalyst.The experimental and theoretical investigations indicate that the high-temperature treatment induces the restructuring of coordination environment and then the optimized Pt electronic state leads to the enhanced HER performances.This work affords new strategy and insights to develop the atomically dispersed high-efficiency catalysts.
其他文献
Three-dimensional (3D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp3-like defect struct
Ni-rich cathodes exhibit appealing properties,such as high capacity density,low cost,and prominent energy density.However,the inferior ionic conductivity and bu
Lithium metal,as the most ideal anode material for high energy density batteries,has been researched for several decades.However,the dendrite formation and larg
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SE
Lithium-sulfur(Li-S) battery is regarded as one of the most fascinating candidates for energy storage due to its dominant advantage of high energy density.However,the shuttling effect of soluble polysulfides and low electrical conductivity of sulfur and L
Hydrogen is considered an attractive alternative to fossil fuels,but only a small amount of it is produced from renewable energy,making it not such a clean ener
Ammonia borane(NH3BH3,AB) is promising for chemical hydrogen sto rage;however,current systems for rapid hydrogen production are limited by the expensive noble metal catalysts required for AB hydrolysis.Here we report the design and s
High-performance materials are the key to developing new alternative energy-storage systems[1-4].Sodium ion batteries(SIBs)are regarded as the promising large-s
Lithium-sulfur (Li-S) batteries are promising energy-storage devices for future generations of portable electronics and electric vehicles because of the outstan
Molecular ordering within the photoactive layer plays a crucial role in determining the device perfor-mance of organic solar cells(OSCs).However,the simultaneou