论文部分内容阅读
针对一类具有未知控制系数的随机系统,该控制系数依赖于时间、状态和未知参数,在更一般的非线性增长条件下,利用积分反推法和参数分离技术,设计了稳定的自适应状态反馈控制器,研究了该系统的自适应状态反馈镇定问题。利用随机分析工具,可以证明由所研究的系统、状态反馈控制器、未知参数估计器所构成的整个闭环系统的平衡点是依概率全局稳定的,系统的所有状态可以几乎处处调节为零。最后,数值仿真验证了自适应状态反馈控制器的有效性。
Aiming at a class of stochastic systems with unknown control coefficients, the control coefficients depend on time, state and unknown parameters. Under more general nonlinear growth conditions, the stochastic adaptive system is designed by using integral backstepping and parameter separation techniques Feedback controller, the adaptive state feedback stabilization of the system is studied. Using stochastic analysis tools, it can be proved that the equilibrium point of the entire closed-loop system composed of the system under study, the state feedback controller and the unknown parameter estimator is probabilistically globally stable, and all the states of the system can be adjusted almost to zero. Finally, numerical simulation verifies the effectiveness of the adaptive state feedback controller.