论文部分内容阅读
提出了一种新型的广义径向基函数(RBF)神经网络,并研究了该网络的学习方法。不同于传统三层结构的RBF网络,广义RBF网络增加了基函数输出加权层,并在输出层采用超曲面去逼近任意的非线性曲面。实例仿真结果表明,与传统的RBF网络相比,该网络具有良好的逼近性能,收敛速度快,可逼近任意多变量非线性函数。