论文部分内容阅读
在各种聚类算法中,基于目标函数的K-均值聚类算法应用最为广泛,然而,K-均值算法对初始聚类中心特别敏感,聚类结果易收敛于局部最优。为此,提出基于加权处罚的K-均值优化算法。每次迭代过程中,根据簇的平均误差的大小为簇分配权值,构造加权准则函数,把样本分给加权距离最小的簇中。限制簇集中出现平均误差较大的簇,提高聚类准确率。实验结果表明,该算法与K-均值算法、优化初始聚类中心的K-均值算法相比,在含有噪音的数据集中,表现出更好的抗噪性能,聚类效果更好。