论文部分内容阅读
针对传统C-V模型对颜色不均匀图像分割失败并且对初始轮廓和位置敏感问题,以及现有符号距离正则项存在周期性振荡和局部极值问题。该文提出结合局部能量信息和改进的符号距离正则项的图像目标分割算法。首先,将全局图像信息扩展到HSV空间,并使用局部能量项信息分析每个像素及其领域内的统计特性,从而在较少的迭代次数内有效分割颜色分布不均匀图像。其次,改进现有符号距离正则项,改进后的符号距离正则项在避免水平集函数的重新初始化的同时,提高了计算效率,保证了水平集函数演化过程的稳定性。然后,定义阈值判断法的水平集函数演